Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 60(5): 1527-1540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35349032

RESUMO

Overactive bladder patients suffer from a frequent, uncontrollable urge to urinate, which can lead to a poor quality of life. We aim to improve open-loop sacral neuromodulation therapy by developing a conditional stimulation paradigm using neural recordings from dorsal root ganglia (DRG) as sensory feedback. Experiments were performed in 5 anesthetized felines. We implemented a Kalman filter-based algorithm to estimate the bladder pressure in real-time using sacral-level DRG neural recordings and initiated sacral root electrical stimulation when the algorithm detected an increase in bladder pressure. Closed-loop neuromodulation was performed during continuous cystometry and compared to bladder fills with continuous and no stimulation. Overall, closed-loop stimulation increased bladder capacity by 13.8% over no stimulation (p < 0.001) and reduced stimulation time versus continuous stimulation by 57.7%. High-confidence bladder single units had a reduced sensitivity during stimulation, with lower linear trendline fits and higher pressure thresholds for firing observed during stimulation trials. This study demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control of sacral neuromodulation. An underlying mechanism for sacral neuromodulation may be a reduction in bladder sensory neuron activity during stimulation. Real-time validation during behavioral studies is necessary prior to clinical translation of closed-loop sacral neuromodulation.


Assuntos
Terapia por Estimulação Elétrica , Gânglios Espinais , Animais , Gatos , Retroalimentação Sensorial , Gânglios Espinais/fisiologia , Humanos , Qualidade de Vida , Bexiga Urinária/fisiologia
2.
IEEE Trans Neural Syst Rehabil Eng ; 27(6): 1209-1216, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021771

RESUMO

Overactive bladder (OAB) patients suffer from a frequent urge to urinate, which can lead to a poor quality of life. Current neurostimulation therapy uses open-loop electrical stimulation to alleviate symptoms. Continuous stimulation facilitates habituation of neural pathways and consumes battery power. Sensory feedback-based closed-loop stimulation may offer greater clinical benefit by driving bladder relaxation only when bladder contractions are detected, leading to increased bladder capacity. Effective delivery of such sensory feedback, particularly in real-time, is necessary to accomplish this goal. We implemented a Kalman filter-based model to estimate bladder pressure in real-time using unsorted neural recordings from sacral-level dorsal root ganglia, achieving a 0.88 ± 0.16 correlation coefficient fit across 35 normal and simulated OAB bladder fills in five experiments. We also demonstrated closed-loop neuromodulation using the estimated pressure to trigger pudendal nerve stimulation, which increased bladder capacity by 40% in two trials. An offline analysis indicated that unsorted neural signals had a similar stability over time as compared to sorted single units, which would require a higher computational load. We believe this paper demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control; however, real-time validation during behavioral studies is necessary prior to clinical translation.


Assuntos
Manometria/métodos , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiopatologia , Algoritmos , Animais , Gatos , Sistemas Computacionais , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Retroalimentação Sensorial , Feminino , Gânglios Espinais/fisiopatologia , Masculino , Modelos Estatísticos , Relaxamento Muscular , Nervo Pudendo , Qualidade de Vida , Bexiga Urinária Hiperativa/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...